Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle.

نویسندگان

  • Jong-Yeon Kim
  • Timothy R Koves
  • Geng-Sheng Yu
  • Tod Gulick
  • Ronald N Cortright
  • G Lynis Dohm
  • Deborah M Muoio
چکیده

Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (alpha) and muscle (beta), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle beta-oxidation proceeds despite malonyl-CoA concentrations that exceed the IC(50) for CPT Ibeta. We evaluated malonyl-CoA-suppressible [(14)C]palmitate oxidation and CPT I activity in homogenates of red (RG) and white (WG) gastrocnemius, soleus (SOL), and extensor digitorum longus (EDL) muscles. Adding 10 microM malonyl-CoA inhibited palmitate oxidation by 29, 39, 60, and 89% in RG, SOL, EDL, and WG, respectively. Thus malonyl-CoA resistance, which correlated strongly (0.678) with absolute oxidation rates (RG > SOL > EDL > WG), was greater in red than in white muscles. Similarly, malonyl-CoA-resistant palmitate oxidation and CPT I activity were greater in mitochondria from RG compared with WG. Ribonuclease protection assays were performed to evaluate whether our data might be explained by differential expression of CPT I splice variants. We detected the presence of two CPT Ibeta splice variants that were more abundant in red compared with white muscle, but the relative expression of the two mRNA species was unrelated to malonyl-CoA resistance. These results provide evidence of a malonyl-CoA-insensitive CPT I activity in red muscle, suggesting fiber type-specific expression of distinct CPT I isoforms and/or posttranslational modulations that have yet to be elucidated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of pH on the interaction of substrates and malonyl-CoA with mitochondrial carnitine palmitoyltransferase I.

The kinetics of carnitine palmitoyltransferase I (CPT I; EC 2.3.1.21) were examined in mitochondria from rat liver, heart and skeletal muscle as a function of pH over the range 6.8-7.6. In all three tissues raising the pH resulted in a fall in the Km for carnitine, no change in the Km for palmitoyl-CoA or Octanoyl-CoA, and a marked decrease in the inhibitory potency of malonyl-CoA. Studies with...

متن کامل

Characterization of a solubilized malonyl-CoA-sensitive carnitine palmitoyltransferase from the mitochondrial outer membrane as a protein distinct from the malonyl-CoA-insensitive carnitine palmitoyltransferase of the inner membrane.

By using octyl glucoside in the presence of glycerol, it is possible to obtain a solubilized malonyl-CoA-sensitive carnitine palmitoyltransferase (CPTo) from the outer membranes of rat liver mitochondria. H.p.l.c. on hydroxyapatite column has now allowed a clear separation of the CPTo from the malonyl-CoA-insensitive CPT activity of the inner membranes (CPTi). The separated CPTo activity showed...

متن کامل

Endurance training attenuates the decrease in skeletal muscle malonyl-CoA with exercise.

Muscle malonyl-CoA has been postulated to regulate fatty acid metabolism by inhibiting carnitine palmitoyltransferase 1. In nontrained rats, malonyl-CoA decreases in working muscle during exercise. Endurance training is known to increase a muscle's reliance on fatty acids as a substrate. This study was designed to investigate whether the decline in malonyl-CoA with exercise would be greater in ...

متن کامل

Sequencing and functional expression of the malonyl-CoA-sensitive carnitine palmitoyltransferase from Drosophila melanogaster.

Using expressed sequence tag data, we obtained a cDNA for a carnitine palmitoyltransferase I (CPT I)-like molecule from Drosophila melanogaster. The cDNA encodes a 782-residue protein that shows 49% and 48% sequence identity with the rat liver and skeletal-muscle isoforms of CPT I respectively. The sequence has two predicted membrane-spanning regions, suggesting that it adopts the same topology...

متن کامل

Solubilization and separation of two distinct carnitine acyltransferases from hepatic microsomes: characterization of the malonyl-CoA-sensitive enzyme.

Conditions have been developed for the solubilization of hepatic microsomal carnitine acyltransferase activity in good yield, with excellent long-term stability and with retention of malonyl-CoA sensitivity. Solubilized microsomal carnitine acyltransferase activity can be separated into malonyl-CoA-sensitive and -insensitive activities either by gel filtration on Superdex 200 or by anion-exchan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 282 5  شماره 

صفحات  -

تاریخ انتشار 2002